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Abstract—Latency-sensitive applications (e.g., wireless gaming
and TV remote play) are increasingly popular in home WiFi
networks. Such millisecond-level latency requirements call for
new fine-grained approaches at the link layer. In this paper, we
show that current solutions work well for throughput but not for
latency due to the long tail of the packet delay distribution. We
thus propose LLRA, a new latency-aware rate adaptation scheme
that reduces the tail latency for delay-sensitive applications.
LLRA takes concerted design in rate control, frame aggregation
scheduling and software/hardware retransmission dispatching.
Our implementation and evaluation confirm the viability of
LLRA in 802.11n home networks.

I. INTRODUCTION

Wi-Fi has been widely deployed in home networking
environment. Over 450 million households worldwide cur-
rently have Wi-Fi networks set up in 2014, reaching 65%
penetration of fixed-line broadband households; by 2018, WiFi
access at home is projected to almost double, covering 800
million households, according to the recent report by Strategy
Analytics [8]. In a typical home WiFi deployment scenario
today, an 802.11n1 AP is used to serve multiple WiFi-capable
devices, including laptops, tablets, smartphones, game consoles
and other gadgets. Home users not only use them for the
Internet access, but also play games, access high-fidelity music,
watch online videos on TV, and to name a few.

We focus on serving latency-sensitive data flows that quest
for millisecond-level delays in a home WiFi network. Each
flow denotes a stream of packets from a source to a destination.
The per packet delay is the duration from the time a packet
arrives at the link layer to the time its acknowledgement (ACK)
is received. For each latency-sensitive flow, we seek to improve
the long tail of its latency distribution. Our specific goal is to
reduce the tail latency of a flow, which is defined as the packet
latency at the α percentile (say, α = 90th of all packets) over
a window of packet bursts of the flow.

Our work is highly motivated by the increasing popularity
of real-time or interactive applications in home WiFi networks.
They impose stringent (millisecond-level) latency requirement
over a single wireless hop. Such applications include wireless
console gaming [4], mobile-to-mobile gaming [16], streaming
gaming [3], screen mirroring and TV remote play (e.g., via
Chromecast [2]), etc.. For wireless gaming, timely delivery of
commands (from the consoles, phones or other peripherals)
and multimedia data if applicable, is critical to the liveness
and interactiveness for gaming. It thus requires the latency

1It can be 802.11a/b/g/n/ac. 802.11n is a popular example.

 0

 25

 50

 75

 100

 0  5  10  15  20  25

C
D

F 
(%

)

Packet Delay (ms)

Default
LL

 75
 80
 85
 90
 95

 100

 5  10  15  20  25  30
Packet Delay (ms)

4.3ms (1.7x)

7.5ms (2.1x)

Figure 1: The cumulative distribution function (CDF) of packet delay
for the default setting and the low-latency (LL) one at the observed
client in an 802.11n home network.

within several milliseconds or even 1 ms [4]. So is the screen
mirroring which projects what we see on the phone or tablet
onto TV. The user experience of these applications is sensitive
to the tail of the latency distribution (expressed in α percentile)
[16]. Outside the home WiFi network, some applications also
have low latency requirement over a single wireless hop.
For instance, high-fidelity music playback expects a latency
within 11.5ms [9], whereas 1-3ms delay is highly desirable in
augmented reality [18].

At first glimpse, it seems that current WiFi can already
meet the latency requirement. With up to 600Mbps speed at an
802.11n AP, higher data rate implies shorter transmission time,
and thereby lower latency. However, our study shows this is not
true in general: Highest speed does not always yield shortest
latency. Figure 1 plots the cumulative distribution functions
(CDFs) of packet latency for two rate settings in 802.11n. The
default setting achieves the highest speed whereas the other,
denoted as low-latency (LL) one, yields shorter per packet
delay. In terms of throughput, the former achieves 108.0 Mbps
and does outperform the latter (1.2x of 87.4 Mbps by LL).
However, it incurs 4–8ms extra delay for the 90th or 95th

latency than LL. Specifically, the default setting takes 10.6 ms
(90th) and 14.6 ms (95th), compared with 6.3 ms and 7.1ms
by LL. The gap of the maximum even reaches up to 38.9 ms
(58.3ms versus 19.4ms). The root cause lies in that, highest
rate reduces the average or medium latency, but not necessarily
the tail latency. In the example, both rates contribute to similar
medium packet delay (4.0 ms), but the highest rate setting
generates a much longer tail, which hurts quality of experience
for applications.

Given the fact that the long tail mainly comes from
the 802.11 link layer, other higher-layer approaches such as
network packet scheduling or transport congestion control
manage latency at course grains and are deemed less effective.
In this work, we reduce the tail latency from the link rate



adaptation (RA) perspective. Our proposed solution LLRA is
a first RA algorithm that achieves millisecond-level latency
in a typical, multi-client home 802.11n network. The goal of
LLRA is to find a LL rate setting with the lowest latency at
the given α percentile. The target tail latency is thus reduced
as much as possible. LLRA is the concerted design of three
components: rate control, frame aggregation scheduling, and
retransmission dispatching. The rate control searches for the
LL rate, which balances between initial queue delay and
service time, thereby achieving lowest latency. The aggressive
aggregation scheduling is further applied to reduce the former.
To curtail the latter, the retransmission dispatching prioritizes
retransmissions. We take a novel probing-based approach to LL
rate search to make it work in real systems. Association rule-
based pruning is used to eliminate high-loss rate settings by
correlating results at different settings under similar channel
conditions. It consequently offers a light-weight solution to
protect LLRA from excessive probing cost.

We have implemented LLRA on commodity 802.11n APs.
In all tested scenarios, it consistently reduces the tail latency
over other algorithms. For the latency at the 90th and 95th

percentiles, LLRA reduces tail latency by 30.7%-90.8% and
21.8%-66.2% over ARA [23] and MiRA [19], respectively. For
example, while ARA and MiRA observe tail latency of 28.0 ms
and 14.4 ms respectively, LLRA keeps it below 10 ms.

The rest of the paper is organized as follows. Section II
describes the background and related work. Section III show-
cases the impacts of RA on latency. Sections IV, V and VI
present the design, implementation and evaluation of LLRA.
Section VII concludes the work.

II. BACKGROUND AND RELATED WORK

RA is an effective software technique to improve wireless
performance, yet left unspecified by the 802.11 standard. In
general, RA needs to address three issues: (1) What rate to set
given the current condition? This is the task of rate control
component; (2) Upon what frames to apply rate control? This
is the role of frame aggregation scheduling component, which
may vary the aggregated frame size; (3) How to handle frame
failures? This is the function of the retransmission dispatcher,
which manages retransmission policy. Consequently, each RA
has three components that work in concert to serve application
flows: (1) rate control; (2) frame aggregation (FA) scheduling;
(3) retransmission dispatching. We next elaborate on each.

Rate control for MIMO: MIMO uses multiple transmit and
receive antennas. It is able to split a data flow into multiple
streams, which are sent through separate transmit antennas.
802.11n supports up to four spatial streams (4 antennas re-
quired), offering at most 600 Mbps [6]. The emerging 802.11ac
supports 8x8 antenna settings, and boosts speed to 7Gbps [7].
Given an antenna and stream setting, there are several MCS
options (varying rates). Rate control adapting to dynamic
wireless channels thus is critical to performance.

Frame aggregation (FA): FA packs multiple data packets
into an aggregated frame. A Block-ACK is sent if at least one
packet in the frame is received without error. Each Block-ACK
can acknowledge multiple packets. The maximum size of an
aggregation frame is bound by the maximum transmission time
of one frame (here, 4 ms), and thus increases with rates.
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Figure 2: Two retransmission types: hardware retry and software
reschedule.

Retransmission: Retransmission is needed to recover from
packet losses. There are two types: hardware retry and soft-
ware reschedule. Figure 2 shows an example of both mecha-
nisms at an AP. Initially, each packet is placed into the software
queue (SQ) once it arrives at the MAC layer. It is not placed
to the hardware queue (HQ) until those in other higher-priority
SQs (for different clients) are scheduled ahead and transmitted.
Once the HQ is available, packets (here, packets 1-3) are
aggregated to form an aggregated frame. It is then pushed
into the HQ and transmitted over the air. Retransmission for
unsuccessful packets depends on whether the ACK is received.

If the ACK is received but not the whole frame succeeds,
software reschedule is applied to retransmitting unsuccessful
packets. A Block-ACK indicates those successful packets and
then those failed ones (here, packet 2) are placed back to its
original SQ (at the head). Retransmission has to wait for its
turn from the scheduling among SQs. The unsuccessful ones
may be aggregated with other packets (here, packets 4 and
5). In contrast, if no ACK is received (all aggregated packets
fail), hardware retry is used. The frame stays in the HQ for
retransmission. The maximum number of hardware retries is
platform dependent and can be configured. If all the hardware
retries fail, software reschedule is eventually employed.

Related work: RA has been actively studied in recent years
(see [10], [13]–[15], [19], [23] for examples). Most proposals
focus on rate control for high goodput in 802.11n or MIMO
networks, such as [13], [19], [23], whereas a few optimize
energy efficiency [14], [15]. Certain rate-control solution is
proposed for specific applications, e.g., encoding-aware prob-
ing adaptation helps to reduce latency in video streaming [10].
However, no latency-aware RA has appeared to reduce the long
tail, particularly at the millisecond granularity.

Numerous solutions have been proposed to optimize wire-
less delay, including packet scheduling [11], [24], MAC
protocol [17], transport-layer optimization [22], [25], redun-
dancy [21], and application optimization for video stream-
ing [10], [12], [20]. They target the latency that is at least an
order of magnitude or more (several hundreds of milliseconds)
on mesh networks, ad hoc networks, cellular networks and
the Internet. Since millisecond-level tail latency is mainly
the product of 802.11 link-layer operations, we believe our
RA-based scheme offers a more viable approach. We aim
to reduce latency not only via rate control, but also through
FA scheduling and retransmission dispatching. Note that our
work is orthogonal to 802.11e [5], which prioritizes channel
contention and access for different traffic classes.

III. PACKET LATENCY IN 802.11N

The latency of a packet consists of three parts:

D = Tq + Tmac + Tair, (1)
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Case Tq[0] TSQ THQ Tair Tmac L (ms)
I 1 0 0 0.2 0.2 1.4 (100%)
II 1 0 2 0.15+0.15 0.2+0.2 3.7 (264%)
III 1 0 0 0.2*3 0.2 1.8 (100%)
IV 1 5 2 0.45+0.15 0.2+0.2 9.0 (500%)

Table I: Latency breakdown of the last packet in four cases.

where Tq is the queuing delay, Tmac is the duration for the
MAC overhead, and Tair is the transmission time on the air.

Tq: the queuing delay includes the initial queuing delay and
possible subsequent values due to retransmissions. Its latency
comes from two queues: the software queue (TSQ) and the
hardware queue (THQ). TSQ is used to wait for being sched-
uled to the hardware queue, while THQ is used to wait for its
turn to be delivered once in the HQ. All the packets experience
the initial queueing delay, since it counts the waiting period
from the packet arrival to its first transmission attempt. For
the delay incurred by retransmission, a hardware retry only
requires THQ, whereas a software reschedule includes both,
thereby resulting in longer delay.

Tmac: It counts the overall MAC overhead for all transmis-
sion attempts including retransmissions. For each transmission
attempt, the MAC overhead covers the time for contention
(backoff), inter-frame space (e.g., DIFS/SIFS) and ACK.

Tair: It sums up transmission airtime for all attempts. For a
packet in a FA frame, its airtime is determined by the length
of the entire frame and the used data rate, since all packets are
bundled in their transmission.

A. Illustrative Examples

We now show how packet latency varies with two rate
settings in non-FA and FA cases. Figure 3 depicts four illus-
trative examples. Consider an AP serving multiple clients. For
one observed client, assume that the low-rate setting RL has
small packet error rate (PER) so that the initial transmission
succeeds. Its per-packet transmission airtime is 0.2 ms. The
high rate RH results in smaller airtime (0.15ms) but larger
PER; its first transmission fails but the delivery succeeds after
one retransmission. Transmission from other clients of interest
takes 2 ms before each transmission of AP. Assume the HQ
holds only one frame, so 2 ms can be considered as THQ. The
initial queueing delay is 1 ms. The MAC overhead for each
transmission attempt is 0.2 ms. Table I shows the breakdown
of the last packet’s latency in four cases.

Cases I and II (non-FA cases): As shown in Table I,
Packet 1 gets the latency 1.4 ms and 3.7 ms in Cases I and
II, respectively. In Case I, it is successfully delivered during
the first attempt. However, in Case II, one retransmission via
hardware retry is needed, resulting in 2.3 ms extra latency. This
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shows that PER plays a critical role, yet the airtime saving from
higher-goodput rates is almost negligible.

Insight 1: Packet latency is dominated by loss-induced
retransmission when other factors have similar effect.

Cases III and IV (FA cases): When FA is used, multiple
packets are transmitted together, thus saving MAC overhead.
It can be seen that three packets share the MAC overhead in
0.2 ms (Case III). For the last packet (Packet 3), its latency is
1.8 ms and 9.0 ms in both cases. In case IV, retransmission is
still the dominant factor, but much longer latency is incurred
compared with Case II. This is due to software reschedule,
which is triggered when partial aggregation frame succeeds. In
such a case, both TSQ and THQ contribute to the delay. TSQ
is obtained by assuming two 2-packet frames from the SQs
for other clients prior to this retransmission. Therefore, TSQ
is 2×2.5 = 5.0 ms (each frame requires THQ+Tmac+Tair =
2 + 0.2 + 0.3 = 2.5 ms). The overall latency is thus 9.0 ms.

Insight 2: When FA is enabled, retransmission (likely via
software reschedule) is deferred longer than that via hardware
retry. It also depends on how many packets have been waiting
in the other software queues.

B. Empirical Study

We now use an empirical study to disclose how the
high-goodput (HG) operations fail to minimize tail latency
(we consider both 90th and 95th percentiles) in 802.11n.
The operations include rate control (that decides packet loss
and retransmissions), frame aggregation (that affects initial
queueing delay and results in large latency due to software
reschedule), and retransmission.

Experimental settings: We conduct experiments in a typical
single family home environment (the left plot of Figure 4).
The WiFi infrastructure mode is used. The AP is located at the
spotAP , whereas clients are placed at fine-grained spots from
P0 to P15. Both AP and the clients use Atheros dual-band
(2.4/5 GHz) 802.11n chipset, supporting up to three antennas
and TS mode (the right picture in Figure 4). We use iperf to
generate constant-rate UDP traffic. Unless explicitly specified,
the default latency goal is the 90th percentile tail, each traffic
flow has 10 Mbps, and the packet size is 1470 bytes. For each
test, we run 25 times and each run is long enough to collect
30K-packet traces. We present the result with the median PER.

Results: We consider the latency of the downlink flow from
the AP to one observed client at P12. Similar findings are
observed at other spots. Figure 5 plots the CDFs of packet
delay for the client under two traffic patterns. In the left plot,



there is only one observed downlink flow and no FA is used.
In the right plot, there are six concurrent downlink flows to
different clients, and by default, aggressive FA is adopted. We
conduct exhaustive search to locate the rate settings yielding
highest goodput (HG) and lowest latency (LL). In both cases,
the HG and LL settings are 162DS2 and 108DS. It is easy to
see that HG performs worse given the 90th (95th) percentile
latency goal.

Insight 3: The default HG operations in 802.11n may fail
to achieve lowest latency.

We make three observations. First, retransmission (due to
high PER) is critical to the tail latency (e.g., the 90th, 95th
percentile) (Insight 1). For the light traffic case with only
one downlink flow (the left plot of Figure 5), HG performs
better in terms of the medium/average latency. However, for
the tail percentile, packets experience retransmissions at the
HG rate (its PER is 17.9% and throughput is 85.4 Mbps).
In contrast, LL has a much lower PER (1.7%) and negligible
retransmissions, yielding shorter latency (e.g., 0.23ms versus
0.54ms at the 90th percentile). Under such light traffic (i.e.,
each packet does not need to wait for others’ transmission),
initial queueing delay is negligible so that the time used for
transmission and retransmission is more critical.

Insight 4: When initial queuing delay is negligible, the
fastest rate setting among those requiring the minimum re-
transmissions at the considered percentile, is preferred since
retransmissions dominate the perceived latency.

Second, FA aggravates the impact of retransmission. Under
heavy traffic load (the right plot of Figure 5), the latency
gap becomes wider. For the 90th percentile tail latency, it
turns into 2.7ms, up from 0.31 ms in case of no FA. This
is because a software reschedule is employed when FA is
used (Insight 2). The left plot in Figure 6 further explains
why. It shows the number of software reschedules in the six-
client setting. Using the HG rate, 12.2% packets encounters
one reschedule, and 2.2% have at least two. It induces longer
queueing delay. This queuing delay can be even larger, when
there are more transmitters (i.e., more clients have uplink
traffic), which results in longer THQ for each transmission.
The result of the scenario with one more uplink flow on top
of the six-client case confirms this, as shown in Figure 1. It
incurs extra 1.6 ms for the 90th percentile tail latency.

Insight 5: Retransmission dispatching is required to reduce
latency for software reschedule in case of retransmissions
(which cannot be avoided in the high-PER scenario such as
mobility, interference, etc.).

Third, the initial queuing delay increases with the number
of transmissions preceding the packet of interest, especially
with the same flow’s ones. It is because the considered packet
needs to wait for the drain of them, each of which experiences
both TSQ and THQ. We examine the effect of the preceding
transmission number on the latency by varying the limit of
aggregation size for the observed client using the HG setting.
The number of preceding transmissions increases with the
decreasing of the size limit. As shown in the right plot of
Figure 6, the latency greatly increases with the decreasing

2162DS denotes the 162 Mbps double-stream mode. Other MIMO modes
include single-stream (SS), triple-stream (TS), and quadruple-stream (QS).
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of the size limit in the six-client case, compared with the
aggressive FA (No limit case). Therefore, to reduce the initial
delay of the considered packet, the number of the transmissions
preceding the packet should be made as small as possible.

Insight 6: Aggressive FA is preferred to reduce initial
queuing delay.

In summary, the interplay of these three components in RA
(i.e., rate control, FA scheduling, retransmission dispatcher)
exhibits inherent tradeoffs from the latency perspective. For
rate control, the higher rate to use, the smaller airtime to
transmit each packet, the possibly higher loss percentage to
receive it. For FA scheduler, aggressive FA and the resulting
larger aggregated frame size help to reduce the initial queueing
delay but it also leads to the likelihood of an individual packet
loss within a large frame. The resulting software reschedule by
retransmission dispatcher generally incurs larger latency than
hardware retry. We will address them in our design.

IV. LLRA DESIGN

Our proposed RA has three components of rate controller,
frame aggregation scheduler, and retransmission dispatcher,
which work together to reduce tail latency. It runs at the
AP. We assume that, an inter-client scheduler is responsible
for allocating certain fair airtime to each client at the higher
level. This can be readily achieved through temporal fair
scheduling [11]. Note that ensuring low latency for uplink
flows at one client is a subset of the problem at the AP, since
the client only handles its own traffic, instead of the AP’s
multiple associated clients.

Our overall solution offers a unified operation of three
components. Given the α−percentile latency requirement (say,
α = 90%), we split the considered N packets into two groups,
one containing the packet with the latency at the (α · N)th,
and the other with the rest of packets. Each packet’s latency
consists of initial queuing delay (induced by packet arrival pat-
terns) and service time (including both the airtime plus Tmac
for transmission and the hold time due to retransmissions).
Based on the six insights, we apply three rules:

• Rule 1: When queueing delay does not vary with rate
settings (e.g., only one transmission is needed to drain
the queue), the service time thus makes difference.
The fastest rate setting among those requiring the least



number of retransmissions is preferred. Otherwise, we
should consider the initial queueing delay and service
time together for each rate setting.

• Rule 2: Aggressive aggregation is applied to the first
group of packets, but not together with the second
group.

• Rule 3: To offset the tail delay of the first group,
prioritized reschedule is applied to the group’s packets
that require software reschedule.

In rate control, we seek to balance between the initial
queueing delay and the service time. The general idea works as
follows. In the presence of light traffic (e.g., only one aggregate
frame in the software queue), we apply rate control that selects
the highest rate setting with low PER, rather than the highest-
goodput rate that incurs higher PER, to the aggregate frame.
This is to reduce the retransmission-induced latency, which
typically dominates the service time. Under heavy traffic (e.g.,
several aggregate frames are required to drain the queue), we
apply rate control that balances the queueing delay and the
service time, to reduce the initial queueing delay for the large
data burst. In this case, the faster yet with larger PER rate may
be better, because it drains packets faster.

Both low-latency FA scheduling and retransmission dis-
patching help to further reduce the queueing and service
delays. FA scheduling applies aggressive aggregation to the
first group’s packets, to minimize the time of draining packets,
thereby reducing the queueing delay. It separately applies
aggressive aggregation to the second group, to minimize
its effect on the queuing delay of subsequent packets. The
retransmission dispatcher prioritizes the retransmitted frames
from the first group when the queue is empty. It thus reduces
the group’s tail delay incurred by software reschedule without
hurting others’ initial queuing delay.

We next elaborate on each component.

A. LLRC: Low-Latency Rate Control

LLRC searches for the LL rate setting across different
MIMO modes, and protects itself from the penalty of ex-
cessive probing. LLRC probes those rates which may reach
the lowest latency at the α percentile, while applying several
pruning rules. The search is triggered by both time-driven and
event-driven approaches. With the former, LLRC periodically
searches for the best one. With the latter, the event is that
the current rate becomes worse. In the penalty protection,
in addition to rate pruning, LLRC introduces a novel light-
weight probing mechanism, which probes rates’ PERs with
few packets. We now present the LLRC search and pruning.
Probing is described in Section IV-C. Note that we use the
interference handling mechanisms similar to [19].

Pruning rules: We first derive three pruning rules for tail
latency. These rules can speed up the search process by
eliminating ineligible rates. They are specified by three corre-
sponding theorems. Two prune lower and higher rate settings
from the current best one Rbest during search, respectively. The
third rule is used for latency comparison between two rates.
Given the packet latency as Dest = Tq[0] + Tsrv. Tq[0] is the
initial queuing delay and depends on the number of preceding
frames (Npre) of the same flow. Tsrv is the service time, and
depends on the expected retransmission count (Nrt) and the
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time consumed by each transmission (Ttx). The theorems are
derived based on these parameters that vary with rate settings.

Theorem 1. Given Rbest with Nrt = 0, any low rate R (i.e.,
R < Rbest) is pruned since it cannot perform better than Rbest
(i.e., Dest(R) ≥ Dest(Rbest)).

Proof: Since R < Rbest and Rbest has low PER (due to
Nrt = 0), Rbest has smaller Npre and Ttx. Moreover, it also
has the smallest value of Nrt, 0, then Dest(R) ≥ Dest(Rbest)
and R can be pruned.

Theorem 2. Given a rate R which R > Rbest and Dest(R) >
Dest(Rbest), the higher rate R′ (i.e., R′ > R) in the same
MIMO mode is pruned since it cannot perform better than
Dest(Rbest).

Proof: Since R > Rbest and Dest(R) > Dest(Rbest), R
must have higher PER such that it has either of larger Npre
and larger Nrt or both. According to the steep increasing of
PER between adjacent rates with non-negligible PER [19], the
higher rate R′ with much higher PER which increases both of
Npre and Nrt cannot perform better and thus can be pruned.
Here, we do not consider Ttx, since Npre and Nrt dominate
the queuing delay and the service time, respectively.

Theorem 3. Given two adjacent rates Rlow and Rhigh. If
they have identical Npre, the one with smaller Nrt is better.
If they also have the same Nrt, Rhigh is better. If they do not
have identical Npre, they need to be compared based on the
estimated Dest.

Proof: The same Npre represents that Rlow and Rhigh
have the same initial queuing delay, so Nrt which dominates
the service time leads the latency. Thus, the one with smaller
Nrt has lower latency. When both Npre and Nrt are the
same, Rhigh transmits faster and thus has smaller Ttx, thereby
achieving lower latency.

Search algorithm: LLRC differentiates MIMO modes (e.g.,
SS, DS, TS). Its search starts from the same MIMO mode of
the current best rate setting (Rbest). It proceeds along upward
direction, and compares tail latency among adjacent rates by
Theorem 3. LLRC replaces the current setting with a better one
when one is found. This upward search continues until either
the highest rate setting is reached or all higher rates are pruned
by Theorem 2. It then queries downward from the original best
rate setting if the number of retransmissions (denoted as Nrt)
is one or more; otherwise, all lower rates are pruned (Nrt = 0)
based on Theorem 1. It continues until either the lowest rate
setting or the highest one with Nrt = 0 is reached. After



the current MIMO mode, LLRC prunes the rate settings at
other MIMO modes by using the highest rate with Nrt = 0.
By Theorem 1, all rates lower than this one can be pruned.
In each mode, the search starts from the rate which is next
higher than the current best one. It searches upward and then
downward, with the same stop conditions.

We illustrate the algorithm via the example of Figure 7. It
is triggered by the event that 162DS becomes worse. Assume
Nrt changes from 0 to 1 when the client moves from P10 to
P12 (Figure 4). We consider the 90th percentile tail latency.
Assume that Npre = 0. The initial queuing delays thus are
the same among different settings. It first searches downward
in the same MIMO mode, so it queries 108DS (Step 1) and
changes the best rate to it, because its Nrt = 0 incurs lower
latency than 162DS with Nrt = 1. With identical initial
queuing delay, Nrt dominates the overall latency. The rates
higher than 162DS can be pruned by Theorem 2. Moreover,
by Theorem 1, all rates lower than 108DS can also be pruned
among all MIMO modes. The search of this mode thus stops.
LLRC then searches the next higher rate, 121.5SS, in the SS
mode (Step 2). Since it is worse than 108DS due to Nrt ≥ 3,
the rates higher than 121.5SS are pruned. It stops at 108SS,
which is worse due to Nrt = 1, (Step 3) in this mode. It further
probes the next higher rate, 121.5TS, in the TS mode (Step
4), and prunes higher rate settings. The search completes with
the best rate, 108DS.

B. Aggregation Scheduling and Retransmission Dispatching

We divide packets into two groups based on the retrans-
mission count occurring at the packet of the α percentile. It
dominates the latency metric, given the same queuing delay
incurred by the current best rate. We collect Nrt and the
latency of N packets in history, and obtain the expected
retransmission count Nrt of the packet (say, β) at the α
percentile. The packets with retransmission count no larger
than β belong to the first group, which contains the packet
with latency at the (α · N)th. The remaining packets belong
to the second group.

Aggregation scheduling packs the first group’s packets as
many as possible for transmission. Once no more packets
in the first group are queued, aggressive FA is applied to
the second group’s packets. If any packet in the first group
encounters software reschedule, it is given the highest priority
and scheduled to the hardware queue right after its failure. It
thus reduces the tail delay of the first group without increasing
the initial queuing delay of other packets in this group.

Take Case IV of Section III-A as an example. In Figure 3,
we consider two cases: β = 0 and β = 1. Assume that the
maximum aggregation size of the current rate is larger than
3. In both cases, aggressive aggregation is applied into the
aggregation formation of packets 1, 2, and 3, since all have no
retransmission count and belong to the first group. However,
different actions are taken for the retransmission of Packet 3 in
two cases. In the former case, it belongs to the second group
due to β = 0. It is thus not prioritized for retransmission and
takes 9.0 ms. In the latter case, it belongs to the first group
due to β = 1. Its retransmission is then prioritized over other
traffic. Consequently, it does not wait for other frames in the
software queues, thereby taking only 4 ms.

Nrt 1 2 3

α = 90th 10.0% 31.6% 46.4%
α = 95th 5.0% 22.3% 36.8%

Table II: PER threshold versus retransmission count.

History Probing 121.5SS 162DS 121.5TS

1 1 1 1
2 1 1 0
3 0 0 0
4 1 0 1
5 1 1 1

Table III: Example of five probing transactions for three rates when
108DS is being used. 0 and 1 denote applicable and inapplicable,
respectively.

C. Novel Light-weight probing

We now introduce a novel light-weight probing mecha-
nism; the goal is to probe PER at a given rate. For example,
the 95th percentile requires PER to have accuracy no larger
than 5% (i.e., at least 20 packets). There are two general
approaches to PER estimation: probing-based [19] and SNR-
based [13]. Most current real platforms do not support the SNR
scheme. We thus take the probing-based approach, in order to
implement and test it on real systems.

It consists of three components: slow-start pruning, asso-
ciation rule-based pruning, success inheritance. The first two
eliminate probing packets for inapplicable rates, especially
those high-loss ones. The last one reduces probing of appli-
cable rates. A rate may inherit successful probings from the
higher rate, thereby reducing its own probing. If other flows
without latency requirements coexist with the latency-sensitive
one, their packets are used for probing. The latency-sensitive
flows accordingly have less probing overhead.

Slow-start pruning: It detects an inapplicable rate with few
packets. To probe a rate, it starts from the frame with one-
packet size, and then exponentially increases the frame size
(i.e., two-packet, four-packet, and so on). It stops when either
the collected results are sufficient or the packet loss count has
verified the inapplicability of the rate. A rate is inapplicable
when its PER exceeds certain threshold associated with the
retransmission count, such that it can perform no better than
the current best rate, according to Table II (to be derived later).

Association rule-based pruning: It uses correlations among
rates to infer a rate’s inapplicability from other rates under
similar channel conditions. The underlying premise is that,
each rate setting behaves similarly among time-varying sam-
ples under the same channel condition, so rate settings can
be correlated with each other in their performance. We apply
association-rule learning to discover correlations between rate
settings. Such correlations are learned from the historical prob-
ing statistics. We further obtain the confidence level of each
correlation, which indicates its reliability. If the confidence
level of one correlation µ is larger than a specified value
(say, µ ≥ 0.9), the correlation is dependable. We only apply
the dependable correlations in our work. Finally, once the
dependable correlation of each rate pair is learned, one rate’s
result can be used to infer the other’s. That is, one rate’s failure
infers that the other rate also fails.

Table III shows an example of five probing transac-
tions for three candidate rates (108DS is the used, current



rate). The inapplicable rates are marked as 1; otherwise,
they are set to 0. The correlation “if 162DS fails (i.e., in-
applicable), then 121.5SS fails” has the confidence of 1.0
( fail(162DS∪121.5SS)fail(162DS) = 3

3 ), and can be used. However, the
one “if 162DS fails, then 121.5TS fails” has the confidence of
0.7 ( 23 ), and is not applicable. Consequently, if the probing of
162DS fails, we do not probe 121.5SS.

D. Parameter Estimation

We further estimate various parameters used in LLRA.
The initial queuing delay includes both software and hardware
queueing delays. Assume that the α percentile’s packet is
always in the last frame, which empties the queue, and
aggressive FA is applied. It can be estimated as follows, based
on the average number of simultaneous packets in the queue
and the rate’s maximum aggregation size:

Tq[0] = (Npre + 1)× Tsw,interval + THQ, (2)

where Tsw,interval represents how often a frame at the head of
the software queue (SQ) is scheduled to the hardware queue
(HQ). The software queuing delay is estimated based on the
number of preceding frames (Npre) plus 1 (i.e., itself) and the
scheduling interval (Tsw,interval). THQ denotes the hardware
queuing delay.

Service time depends on the retransmission count Nrt
and type. Given the expected retransmission count at the α
percentile with the given rate’s PER. It can be estimated in
both non-FA (Tsrv,nofa) and FA (Tsrv,fa) cases:

Tsrv,nofa = Ttx +Nrt × (Thw,interval + Ttx), (3)
Tsrv,fa = Ttx +Nrt × (THQ + Ttx), (4)

where Ttx is the sum of airtime and MAC overhead for each
transmission, and Thw,interval represents how often a frame
at the head of HQ is scheduled for transmission. Thw,interval
is usually smaller than THQ, since the size of HQ may be
larger than one frame. In Tsrv,fa, THQ is used for the retrans-
mission of software reschedule. Low-latency retransmission
dispatching places the rescheduled packets to the tail of HQ,
instead of SQ, right after failure. For simplicity, Ttx is treated
the same between different transmissions, since its variation
is negligible compared with the number of retransmissions,
which dominates the service time.

Given the PER at a given rate setting, we estimate the
retransmission count (Nrt) for the packet at the α percentile.
Assume packet error events are independent and have the same
probability p. The probability that a successful transmission is
preceded by i failures, is given by pi(1− p). This probability
also represents the percentage of the successful frames after
i + 1 transmissions. If the percentage is larger than α, we

compute Nrt as the smallest integer satisfying
Nrt∑
i=0

pi(1− p) ≥
α. As a result, we can calculate the PER threshold for the
retransmission count shown in Table II.

Moving average estimation is applied for the following
parameters: Npre, Ttx, THQ, Thw,interval, and Tsw,interval.

Given rate setting R, Npre is estimated as
⌈

Nsp×ρ
maxFA(R)

⌉
−1,

where Nsp is the number of simultaneous first-attempt packets
appearing together at the queue, ρ represents the ratio of the

first-attempt packets to the total number of packets with no
more than three attempts, and maxFA(R) is the maximum
aggregation frame size of R. Note that the number of packets
with more than three attempts is negligible. To estimate Nsp,
we start to count packets when they come to the empty
queue, but stop counting when no more first-attempt packet
is in the queue after a frame is scheduled. Ttx is given by
avgFA(R)×framesize

tpt(R) +Tmac, where avgFA(R) is the average
aggregation frame size of R, framesize is the average frame
size, and tpt(R) is the loss-free throughput of R. avgFA(R)
can be calculated as Nsp×ρ

Npre+1 .

Tsw,interval takes into account both the traffic load at the
AP and that from other clients on the same channel. It is
estimated based on the scheduling interval of two adjacent
frames in the SQ. Thw,interval is estimated in two cases. If
HQ does not have any frame ahead of the current transmission,
we compute Thw,interval as the duration from the time the
frame is placed into HQ to the time its ACK is received,
while subtracting transmission airtime (Tair) and the MAC
overhead (Tmac). If HQ has frames before the current trans-
mission, Thw,interval is calculated as the duration between two
consecutive ACKs for first-attempt transmissions, while also
excluding Tair and Tmac of the second frame. Finally, for
the hardware queueing delay THQ, it is the duration from the
time the frame is just placed into HQ to the instant its ACK
is received, which excluding Tair and Tmac.

E. Other Issues

There are some additional issues in LLRA.

Coexistence of LLRA and other RA goals at different
clients: LLRA may coexist with the clients pursuing other
goals (e.g., highest goodput and energy efficiency) under the
same AP. The LLRA clients may slow down from their
high-goodput rate settings and grab more airtime, thereby
possibly affecting the performance of other clients (e.g., lower
goodput or less energy-saving). Nevertheless, the impact can
be alleviated or eliminated through an inter-client scheduler.
The airtime allocated to each client is constrained by the
scheduling policy (e.g., fair airtime allocation via temporal
fair scheduling [11]). Thus, each client is only able to use
up its assigned airtime so that it does not affect the others
no matter which goal it pursues. When LLRA clients do not
have enough airtime for the slowdown of LL rate settings, they
switch to the highest-goodput settings upon their backlogged
queue. Note that the scheduling mechanisms and policies of
airtime allocation are independent of this work.

Impact of LLRA on non-latency-sensitive flows at the same
client: LLRA may hurt the throughput of the non-latency-
sensitive flows, when LLRA is simply applied to all the flows
at one client. It can be addressed by considering latency-
sensitive flows and the others separately. For example, a hybrid
RA algorithm pursues the lowest latency for the former flows,
while retaining the highest goodput for the latter ones. We
leave it to the future work.

V. IMPLEMENTATION

We implement our design in Atheros 802.11n WiFi driver
(i.e., ath9k [1]). At the initialization phase, the client MAC



is notified of the low-latency requirement for a given flow
based on its five-tuple flow ID. The wireless MAC then notifies
the AP of this flow requirement via an action frame, a type
of management frame. To measure the latency of a packet,
we rely on the structure of its associated socket buffer to
hold the start timestamp. The timestamp is logged once the
packet is passed to the MAC from the upper layer. It is then
traced via the sequence number in the MAC header, when it
moves between hardware and software queues, transmission,
and retransmission. When its ACK is received, the difference
between the logged start timestamp and the current one is the
overall latency. We execute our design mainly in two modules
of the WiFi driver: rate control and transmission modules.
The former module implements rate control, whereas the latter
takes charge of the FA scheduler and the retransmission dis-
patcher. Note that our implementation not only uses standard-
compliant messages, but also follows the general WiFi driver
framework. It can be readily ported to other WiFi drivers.

VI. PERFORMANCE EVALUATION

We evaluate LLRA through extensive experiments in a
commodity 802.11n network. We compare LLRA with two
802.11n RA algorithms – default Atheros RA (ARA) [23]
and MiRA [19]. We examine the latency for a downlink flow
in both single-client (non-interference, interference, and static
and mobile scenarios) and multi-client cases. Experimental
settings are described in Section III-B. Findings are similar. We
only present some representative results due to space limit. Our
evaluation shows that LLRA consistently outperforms ARA
and MiRA in all tested scenarios. For example, it reduces the
90th percentile latency by 1–19 ms in interference and multi-
client cases (about 22–68% reduction).

A. Single-client Case

We first consider the non-interference cases over the 5GHz
band at various spots or with different latency goals. We further
assess it in the interference and mobility cases.

Client Placements: We study LLRA under various wireless
channels by placing the client at different spots. Figure 8
shows the 90th percentile tail latency and the achieved goodput
at various spots. LLRA consistently outperforms ARA and
MiRA by reducing latency by 30.7%–75.2% and 22.9%–
63.4%, respectively. Moreover, it only sacrifices 0.5%-13.3%
goodput. It is because LLRA chooses LL rates at low probing
costs. Figure 9 plots the rate distribution at P3 and P6. The
rates chosen by LLRA are a little slower than the HG rates
but have lower PERs. Take P3 as an example. LLRA mainly
stays at the LL rate, 121.5TS, which has comparatively low
PER (1.9%), while also oscillating between two adjacent rates,
162DS and 108DS. In contrast, ARA and MiRA tend to choose
the HG rate (162DS), which results in higher PERs (≈ 12%).

Latency Goals: We vary latency goals to examine how
LLRA performs with different tail latency requirements. We
use P14 as an example to demonstrate its impact. The results
are similar to other spots. Figure 10(a) shows the latency
gain for three percentiles, 80th, 90th, and 95th. We have two
observation. First, LLRA outperforms both ARA and MiRA
for all three goals. Second, the gain becomes smaller at the
lower percentile. The latency reduction decreases from 63.4%
to 31.9% (ARA) and from 52.5% to 8.0% (MiRA), when the
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Figure 8: 90th percentile latency and goodput vary with spots.
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Figure 9: Rate distributions at P3 (Left) and P6 (Right).

percentile changes from 95th to 80th. It is because the chosen
LL rate is very close to the HG one, as the percentile decreases.

Interference: We evaluate LLRA with rich interference using
Channel 1 (20MHz) at the crowded 2.4GHz. It is observed
that there are more than 10 APs from neighbors. Figure 10(b)
shows the 90th latency at P3 and P9. LLRA is still more
effective in lowering latency. The reduction over ARA is 19 ms
(67.7%) and 3 ms (50.6%), while the one over MiRA is 4 ms
(32.3%) and 1 ms (21.8%). The most noticeable thing is that
actual latency is much larger in this case, e.g., 28 ms for ARA,
up from 1 ms in the non-interference case. The reason for much
larger delay is that (1) interference brings longer queuing and
contention time, and (2) RA algorithms tend to slow down due
to interference-induced loss. Even so, LLRA performs robust
against co-channel interference. It implies its effectiveness in
competing scenarios.

Mobility: We move the client from P6 to P1 along the
wall and then back to P6, at the constant pedestrian speed of
1 m/s. The client is loaded with 5 Mbps source. Figure 10(c)
shows that LLRA outperforms ARA and MiRA by 85.3-90.8%
and 42.6-66.2%, respectively. It implies that LLRA is able to
rapidly locate the LL rates during mobility.

B. Multi-client Case

We further evaluate LLRA in the multi-client case. We
consider two sub-cases: the observed client is placed in a
far spot (P0) or a near spot (P13). Another five clients are
deployed at P4, P6, P7, P9, and P10. Each client is loaded
with a downlink traffic flow. We use up to 4 clients (P0) and 6
clients (P13). Figures 11(a) and 11(b) show the results for the
90th and 95th percentile latency. Even compared with MiRA
(better than ARA), LLRA reduces latency by 30.5%–52.5%
(2–5 ms). LLRA prefers to stay at the LL rate without incurring
retransmissions at both 90th and 95th percentiles. However,
ARA and MiRA stay at the HG rates and aggressively probe
higher rates with high losses. Their high PERs (15.1-29.7%)
result in one or two retransmissions, incurring larger delay than
the single-client case.

In order to examine how retransmission dispatcher comes
into play, we test LLRA with high loss in the multi-client
case. We induce more possible collisions by adding one or
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Figure 10: The tail latency varies with different scenarios in the single-client case.
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Figure 11: Multi-client case. (a)(b): a downlink flow per client. (c): downlink flows plus one (P0) or two (P13) uplink flows.

two uplink flows. The uplink traffic also reduces the capacity
for downlink flows; we then support 2-clients and 4-clients in
the P0 and P13 cases. Figure 11(c) gives the 95th percentile
latency for the observed client. LLRA continues to outperform
them by saving 4–8 ms (26.2%-41.0%). It is mainly attributed
to its retransmission dispatcher. Even though the rate controller
chooses the rate with lower PER, the packet at the 95th

percentile for LLRA still experiences one retransmission via
software reschedule. Retransmission dispatcher then helps to
prioritizes retransmissions to have smaller queueing delay.

VII. CONCLUSION

Supporting latency-sensitive applications is important for
802.11n/ac home networks. As 802.11n/ac is increasing its
link speed, the common-sense perception “higher speed is
enough to ensure low latency for such applications” is plain
wrong. The fundamental problem lies in the long-tailed latency
distribution at the link layer. Current link rate adaptation
for 802.11n devices works well for throughput, but cannot
meet the millisecond latency demand. In this work, we design
LLRA, which dynamically balances between various settings
ranging from “higher goodput yet higher loss” to “slightly
lower goodput but much lower loss”. Through extensive
evaluation, LLRA outperforms traditional high-goodput RA to
reduce the tail latency.
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